16 Loop PID CoProcessor

Overview

The F4-16PID is a Proportional Integral Derivative (PID) CoProcessor designed to execute up to 16 PID loops independent of the DL405 CPU. Using the high-speed Intelligent Bus Interface, the F4-16PID reads the process variable and writes the PID output directly into V -memory of the DL405 CPU. Configure the module PID loop using DirectSOFT Data View or ladder logic.

Minimal ladder logic is required in the CPU, therefore, the floating point mathintensive PID calculations in the CoProcessor have little effect on the CPU scan time. As a result, the CPU can perform high-speed discrete control while the CoProcessor performs high-speed PID.

Operation

The process variable (PV) comes from an input module, usually an analog input or thermocouple. The user ladder logic copies the input value to the Process Variable location.
The PID module calculates the loop output value and places it at the Output location. The user can write this value to an analog output channel, use it as a time proportion for a discrete output, or send it to the setpoint or another loop for cascading loops.
All loop information is read from and written to a user specified block of V memory. Each loop that is enabled requires 32 V -memory locations. Since all loop parameters are stored in V-memory, any device capable of reading and writing DL405 V-memory can be used to configure, tune, and monitor loops.

The information included in each loop's block of V-memory includes:

- Bit Mapped Mode Word
- Process Variable (PV)
- Setpoint (SP)
- Bias
- Output
- Bit Mapped Alarm word
- Sample Rate (. 1 to 999.9 sec . or min.)
- Gain
- Reset
- Rate
- PV Low Low Alarm
- PV Low Alarm
- PV High Alarm
- PV High High Alarm
- PV Yellow Deviation Limit
- PV Oranģe Deviation Limit
- Alarm Deadband
- Error Deadband Below SP
- Error Deadband Above SP
- Derivative Gain Limiting Coefficient
- Setpoint Low Limit
- Setpoint High Limit
- Maximum Output Clamp
- Minimum Output Clamp

Some variations of PID control are done with supporting ladder logic. Examples that are included in the PID manual are:

- Auto/Manual Mode Control
- Setpoint Ramp and Soak
- Alarm Word Decoding
- Time Proportioning Control Loops
- Cascading Loops
- Positioning Actuator Control Loops

16 Loop PID CoProcessor

mumeret looms	mem
\%	
mobat	
Aummana	
㖪	
	Semmen
Remoses raseral	
Smmess rame	
Sepe 8 sas	
mato	
asatumima	3mamammame
Smomatama	
Sumed)
20	
	为
	nemsparains
Putammems	
Pvoention	
	\%w
Samer Trasmea	Nampusmemem

Check the Power Budget

Verify your power budget requirements

Your I/O configuration choice can be affected by the power requirements of the I/O modules you choose. When determining the types and quantity of I/O modules you will be using, it is important to remember there is a limited amount of power available from the power supply.
The chart on the opposite page indicates the power supplied and used by each DL405 device. The adjacent chart shows an example of how to calculate the power used by your particular system. These two charts should make it easy for you to determine if the devices you have chosen fit within the power budget of your system configuration.
If the I/O you have chosen exceeds the maximum power available from the power supply, you can resolve the problem by shifting some of the modules to an expansion base or remote I/O base (if you are using remote I/O).
Warning: It is extremely important to calculate the power budget correctly. If you exceed the power budget, the system may operate in an unpredictable manner which may result in a risk of personal injury or equipment damage.

Use ZIPLinks to reduce power requirements

If your application requires a lot of relay outputs, consider using the ZipLink AC or DC relay output modules. These modules can switch high current (10A) loads without putting a load on your base power budget. Refer to page 6-57 for more information.

This logo is placed next to I/O modules that are supported by the ZIPLink connection systems. See the I/O module specifications at the end of this section.

Calculating your power usage

The following example shows how to calculate the power budget for the DL405 system. The example is constructed around a single 8 -slot base using the devices shown. It is recommended you construct a similar table for each base in your system.

A				
	Base Number 0	Device Type	5 VDC (mA)	External 24 VDC Power (mA)
B	GURRENT SUPPLIED			
	CPU/Expansion Unit /Remote Slave	D4-440 CPU	3700	400
-	CURRENT REQURED			
	SLOT 0	D4-16ND2	+150	+0
	SLOT 1	D4-16ND2	+150	+0
	SLOT 2	F4-04DA	+120	+100
	SLOT 3	D4-08ND3S	+100	+0
	SLOT 4	D4-08ND3S	+100	+0
	SLOT 5	D4-16TD2	+100	+0
	SLOT 6	D4-16TD2	+100	+0
	SLOT 7	D4-16TR	+1000	+0
1	OTHER			
	BASE	D4-08B	+80	+0
	Handheld Programmer	D4-HPP	+320	+0
E	Maximum Gurrent Required		2820	100
F	Remaining Gurrent Available		3700-2820=880	400-100=300
	1. Using a chart similar to the 3 one above, fill in column 2. 2. Using the tables on the opposite page, enter the current supplied and used by each device (columns 3 and 4). Pay special attention to the current supplied by the CPU, Expansion Unit, and Remote Slave since they differ. Devices which fall into the "Other" category (Row D) are devices such as the Base and the Handheld programmer, which also have power requirements, but do not plug directly into the base. 3. Add the current used by the system devices (columns 3 and 4) starting with Slot 0 and put the total in the row labeled "maximum current required" (Row E). 4. Subtract the row labeled "Maximum current required" (Row E), from the row labeled "Current Supplied" (Row B). Place the difference in the row labeled "Remaining Current Available" (Row F). 5. If "Maximum Current Required" is greater than "Current Supplied" in either column 3 or 4 , the power budget will be exceeded. It will be unsafe to use this configuration and you will need to restructure your I/O configuration. Note the auxiliary 24 VDC power supply does not need to supply all the external power. If you need more than the 400 mA supplied, you can add an external 24 VDC power supply. This will help keep you within your power budget for external power.			

DL405 CPU power supply specifications and power requirements

Specification	AC Powered Units	24 VDC Powered Units	125 VDC Powered Units
Part Numbers	$\begin{aligned} & \text { D4-450, D4-440, D4-430, } \\ & \text { D4-EX (expansion base unit), } \\ & \text { D4-RS (remote slave unit) } \end{aligned}$	D4-450DC-1, D4-440DC-1, D4-EXDC (expansion base unit), D4-RSDC (remote slave unit)	$\begin{aligned} & \text { DA-450DC-2 } \\ & \text { D4-440DC-2 } \end{aligned}$
Voltage Withstand (dielectric)	1 minute @ 1,500 VAC between primary, secondary, field ground, and run relay		
Insulation Resistance	$>10 \mathrm{M} \Omega$ at 500 VDC		
Input Voltage Range	$85-132$ VAC (110 range) $170-264$ VAC (220 range	20-28 VDC (24 VDC) with less than 10% ripple	90-146 VDC (125 VDC) with less than 10% ripple
Maximum Inrush Current	20 A	20 A	20 A
Maximum Power	50 VA	38 W	30 W

Power Requirements

